Sample size calculation for differential expression analysis of RNA-seq data under Poisson distribution

نویسندگان

  • Chung-I Li
  • Pei-Fang Su
  • Yan Guo
  • Shyr Yu
چکیده

Sample size determination is an important issue in the experimental design of biomedical research. Because of the complexity of RNA-seq experiments, however, the field currently lacks a sample size method widely applicable to differential expression studies utilising RNA-seq technology. In this report, we propose several methods for sample size calculation for single-gene differential expression analysis of RNA-seq data under Poisson distribution. These methods are then extended to multiple genes, with consideration for addressing the multiple testing problem by controlling false discovery rate. Moreover, most of the proposed methods allow for closed-form sample size formulas with specification of the desired minimum fold change and minimum average read count, and thus are not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size formulas are presented; the results indicate that our methods work well, with achievement of desired power. Finally, our sample size calculation methods are applied to three real RNA-seq data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample Size Calculation of RNA-sequencing Experiment-A Simulation-Based Approach of TCGA Data

Power and sample size calculation is an essential component of experimental design in biomedical research. For RNA-sequencing experiments, sample size calculations have been proposed based on mathematical models such as Poisson and negative binomial; however, RNA-seq data has exhibited variations, i.e. over-dispersion, that has caused past calculation methods to be underor over-power. Because o...

متن کامل

Power analysis and sample size estimation for RNA-Seq differential expression.

It is crucial for researchers to optimize RNA-seq experimental designs for differential expression detection. Currently, the field lacks general methods to estimate power and sample size for RNA-Seq in complex experimental designs, under the assumption of the negative binomial distribution. We simulate RNA-Seq count data based on parameters estimated from six widely different public data sets (...

متن کامل

PROPER: comprehensive power evaluation for differential expression using RNA-seq

MOTIVATION RNA-seq has become a routine technique in differential expression (DE) identification. Scientists face a number of experimental design decisions, including the sample size. The power for detecting differential expression is affected by several factors, including the fraction of DE genes, distribution of the magnitude of DE, distribution of gene expression level, sequencing coverage a...

متن کامل

A comprehensive simulation study on classification of RNA-Seq data

RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the sta...

متن کامل

Regulatory effects of cis- and trans-LncRNAs on differential expression of genes following infection with viral hemorrhagic septicemia virus in rainbow trout (Oncorhynchus mykiss)

In this study the cis and trans regulatory effect of long non-coding genes (lncRNA) on the expression of genes in fish infected by Viral hemorrhagic septicemia virus (VHS) was investigated using RNA-seq technology. At the end of experimental period (the thirty fifth day), total RNA was extracted from spleen tissue (group treated with virus) and physiological serum (control group) was used to pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of computational biology and drug design

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2013